

Analisadores in-line na distribuição da água (pH, potencial óxido-redução) e esgoto (oxigênio dissolvido).

More than

sensors + automation

Agenda

- Noções básicas de valor ao pH
- Noções básicas Redox (ORP)
- Noções básicas Basics O-OD
- Noções básicas de turbidez
- Dispositivos JUMO 5.
- Exemplos de aplicações

More than sensors + automation

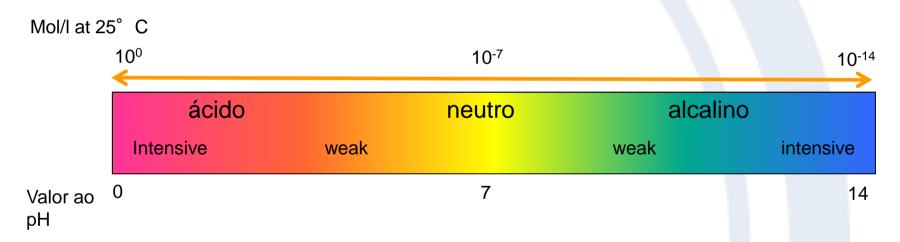
Nossos pontos fortes beneficiar você

1. Valor ao pH

Noções básicas

1. Valor ao pH

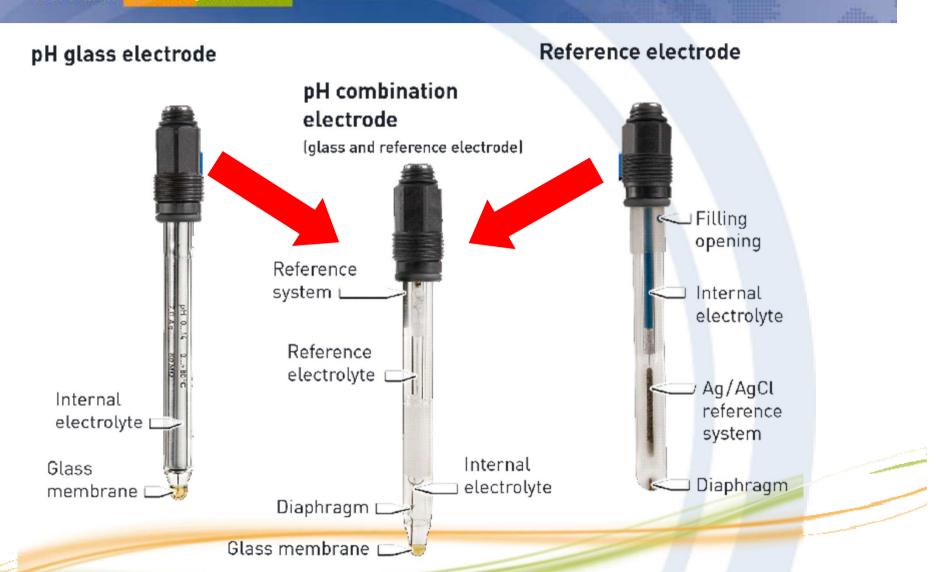
O significado como parâmetro de medição


- O valor de pH é uma das medidas químicas mais importantes e critérios de avaliação
- •... Para a interação química (agressiva e corrosiva, neutro, cáustico) de uma solução no sentido de que todos os meios estão em contacto com
- •... Para determinar a qualidade (pureza, higiene ...) da água e soluções aquosas
- •... Para a determinação da qualidade de produtos industriais
- •... Para executar processos industriais dependentes de pH (floculação, precipitação, polimerização) em condições estáveis

Valor ao pH

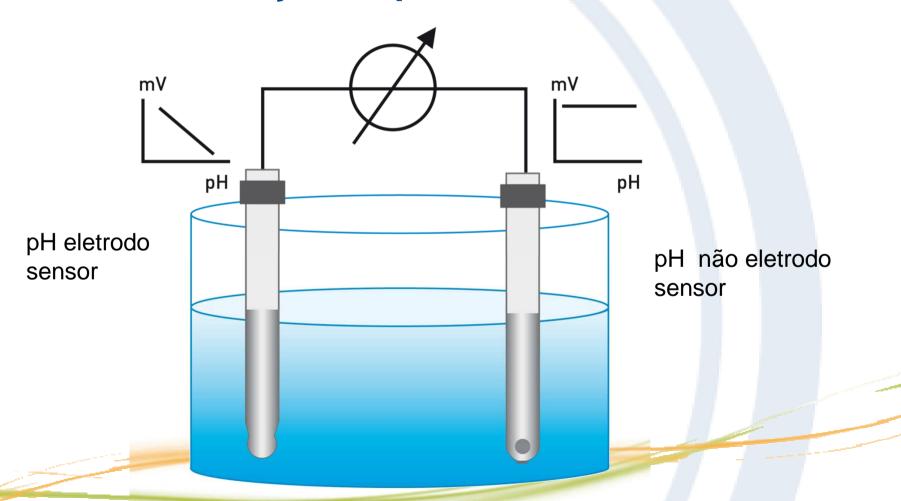
Medida do íon hidrogênio atividade * da solução

pH $x = -log a(H^+)^* at mol/l$


Logaritmo comum negativo da atividade do íon hidrogênio

^{*} Devidamente que são íons oxónio (H3O +)

More than sensors + automation



circuito de medição de **pH**

2. Redox potential (ORP)

Noções básicas

2. Redox potential

Medição da oxidação e redução de um meio de resposta

Medida: Tensão (Diferença de potencial)

Unidade de medida : mV or %

Intervalos típicos : +/- 1500 mV (+/-2000mV)

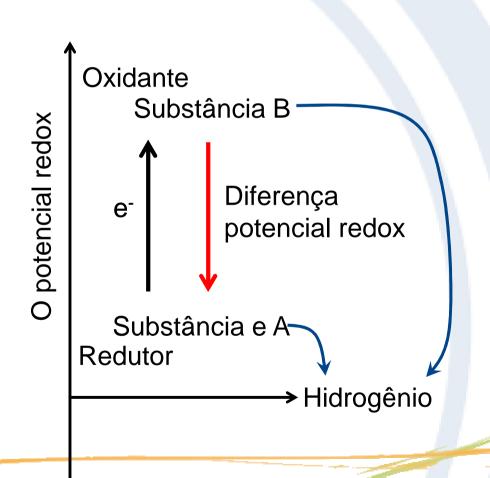
Princípio: RedOx Reação

Transferência de elétrons entre dois reagentes (redox de par), através libertando (oxidação) e receber (redução) de electrons

Redox-Pair: Electron doador + Electron aceitante

potencial mais negativo potencial mais positivo

fluxo de elétrons


Exemplo: potencial redox de ferro Fe/Fe²⁺ (Red./Ox.)

Oxidação : Fe \longrightarrow Fe²⁺ + 2e⁻

Redução: $Fe^{2+} + 2e^{-} \longrightarrow Fe^{R}$

O potencial redox

Série de metais - potencial redox

Φ,							ŀ														
Difference redox potentials																					
														increases	Reduction potential Metal						
Gold	Platinum	Mercury	Silver	Copper	Hydrogen	Lead	Tin	Nickel	Cobalt	ron	Chromium	Zinc	Manganese	Aluminium	Magnesium	Sodium	Calcium	Potassium	Lithium		Metal
+1.36	+1.2	+0.85	+0.80	+0.35	0.00	-0.12	-0.14	-0.23	-0.28	-0.44	-0.56	-0.76	-1.05	-1.67	-2.34	-2.71	-2.76	-2.92	-3.05	potential in V	Standard
Au ⇔ Au ³⁺ + 3e ⁻	Pt ⇔ Pt ²⁺ + 2e ⁻	Hg ⇔ Hg ²⁺ + 2e ⁻	Ag ⇔ Ag ⁺ + e ⁻	Cu ⇔ Cu ²⁺ + 2e ⁻	1/2H2 ⇔ H+ + e⁻	Pb ⇔ Pb ²⁺ + 2e ⁻	Sn ⇔ Sn ²⁺ + 2e ⁻	Ni ⇔ Ni ²⁺ + 2e ⁻	Co ⇔ Co ²⁺ + 2e ⁻	Fe ⇔ Fe ²⁺ + 2e ⁻	Cr ⇔ Cr ³⁺ + 3e ⁻	Zn ⇔ Zn ²⁺ + 2e ⁻	Mn ⇔ Mn ²⁺ + 2e ⁻	Al ⇔ Al ³⁺ + 3e ⁻	Mg \Leftrightarrow Mg ²⁺ + 2e ⁻	Na ⇔ Na ⁺ + e ⁻	Ca ⇔ Ca ²⁺ + 2e ⁻	X	Li ⇔ Li ⁺ + e ⁻		Redox system
																				increases	Oxidation potential

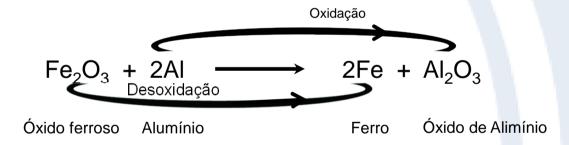
Reação redox

Características dos oxidantes e agentes redutores

Oxidante:

- oxida outras substâncias
- recebe elétrons e, portanto, em si reduzida
 Exemplos: Oxigenio, desinfetantes, enxofre, alvejantes,

Agente Redutor:


- reduz outras substâncias
- libera elétrons e, portanto, é oxidado em si
 Exemplos: As substâncias orgânicas (proteínas, comida ..), metais comuns, não-metais, ..

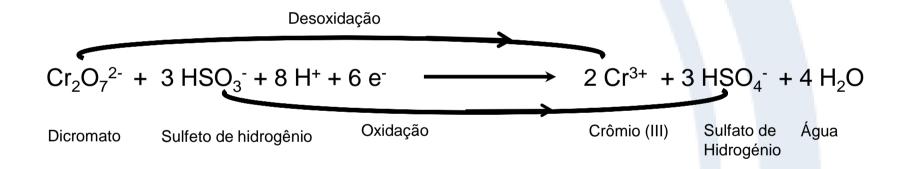
Reação redox

É uma reação de equilíbrio * entre 2 substâncias (Redox-pares)

Exemplo: processo Thermite - Redox Reação de óxido de ferro e alumínio

Oxidação: $2 \text{ Al} \longrightarrow 2 \text{Al}^{3+} + 6 \text{e}^{-}$

Redução: $2 \text{ Fe}^{3-} + 6 \text{e}^{-} \longrightarrow \text{Fe}$


Nesta reacção o oxigénio transporta os electrões!

^{*} Reacções de equilíbrio são sempre dependente da pressão e da temperatura, em sistemas aquosos sobre o valor de pH!

Reação redox

Exemplo: descontaminação cromato de água ácida resíduos galvânica

Potential Redox (E)

Soma do potencial de redução + oxidação potencial Princípios:

- Tecnicamente oxidação e redução podem ser cobertos por diferenças de potencial (voltagem); voltagens são detectados pela sonda quase sem poder
- Fluxo de elétrons ocorre do Redox-par de potencial mais negativo para o Redox-par de potencial mais positivo
- A altura do potencial está dependendo do rácio de concentração entre o oxidante para o redutiva
- O potencial de redução em soluções líquidas são dependentes do valor pH
- Quanto maior for o potencial redox, a intensidade do poder de oxidação
- Quanto mais negativamente o potencial redox, a mais intensa ao poder redutor

Exemplos de potencial Redox

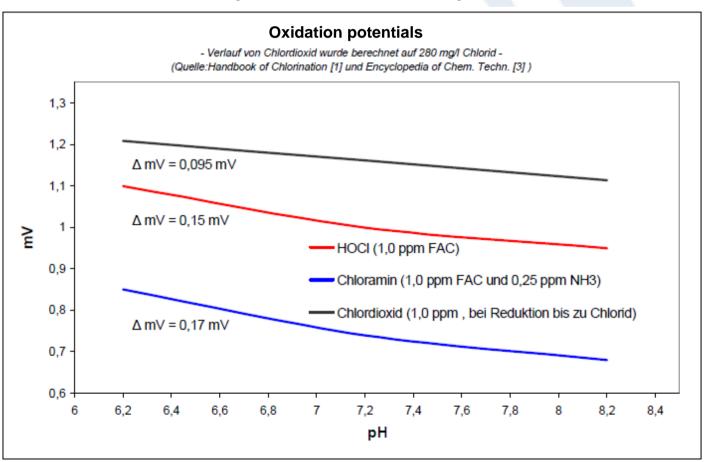
Tratamento de águas residuais em estações de águas residuais

- •Inspeção de desnitrificação; Valor de pH 6,5-7,5
- •Conversão de nitrato (NO3) para nitrogênio elementar (N2) Nitrito de oxidação, pH 3-4
- •A conversão do nitrito (NO2-) a nitrato (NO3)

Exemplos de potencial Redox

Indústria de tratamento de agua

- cianeto de descontaminação / -oxida�o; pH> 10,5
- Conversão de cianeto (CN ~) através de cianato (CNO-) para azoto (N2) e dióxido de carbono (CO2)


Exemplo: galvanização, produção de placa de circuito, estações de tratamento de calor,

- descontaminação cromato / -redução
- Conversão de Cr6 + para Cr3 + compostos em fortemente ácido (pH <2,5) ou meio fortemente alcalina

Exemplo: Eletrólise (cromo brilhante e duro), decapagem e banhos de águas-fortes, a produção de alumínio, banhos chromalising

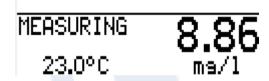
Exemplo de diferentes potenciais de oxidação de compostos de cloro dependente valor pH

Potencial de redução como um indicador de desinfecção

Sistema Redox: Ozônio - substância orgânica

Redox potential mV	Germ load % to the output value	Germ reducing % to the output value					
200	100	0					
300	10	90					
400	1	99					
700	0 (absolute sterilization)	100%					

3. Tecnologia para medição de oxigênio dissolvido

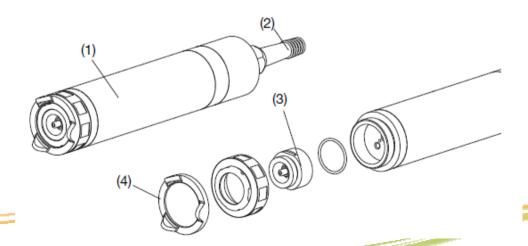

Noções básicas

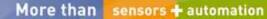
Informações básicas sobre medição de oxigênio

A dependência da saturação de oxigênio no salinidade e pressão de ar

- O oxigénio é medida em mg / I, por exemplo
 A capacidade da água para absorver oxigênio
 depende da salinidade (teor de sais dissolvidos
 em água (em peso%) e na pressão do ar
 ambiente)
- Em muitas aplicações, o nível de saturação de oxigênio da água é medido. Este facto tem a salinidade e a pressão do ar relativa

Informações básicas sobre medição de oxigênio


A dependência da saturação de oxigênio no salinidade e pressão de ar

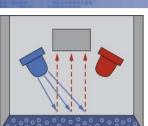

- O consumo máximo possível de oxigénio também depende da temperatura da solução de medição, por exemplo, em água doce (0% de salinidade) e 1013 hPa
 - 0 ° C, 100 % saturação em 14,6 mg/l
 - 10 ° C, 100 % saturação em 10,92 mg/l
- MEASURING 100 23.2°C %S
- 20 ° C, 100 % saturação em 8,84 mg/l
- Em muitas aplicações a temperatura da solução de medição não é constante. Devido a este fato, uma medição de temperatura é necessário para a compensação da saturação de oxigênio (ambos JUMO-sistemas incluem um sensor de temperatura)

Transmissor de oxigênio

- O transmissor de oxigênio consiste em:
 - alojamento (1) com os componentes electrônicos do transmissor e do cabo de ligação (2)
 - o módulo sensor (3) e o cesto de protecção (4)

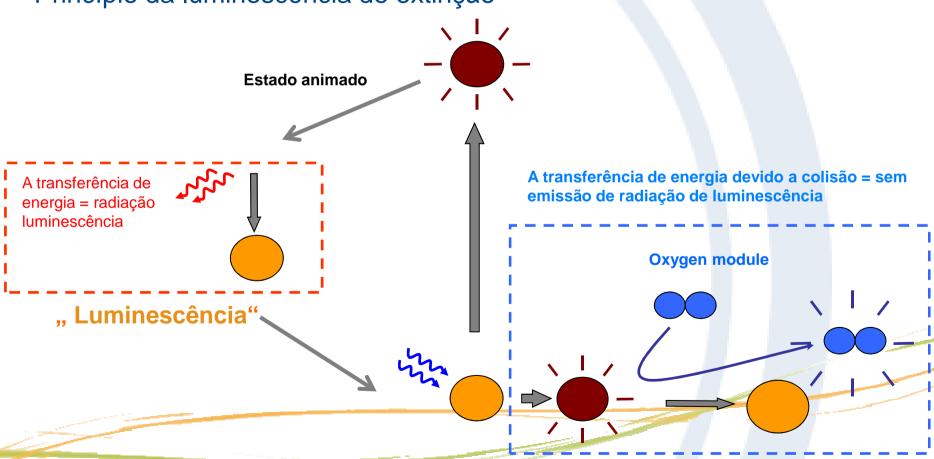
Transmissor de oxigênio

A célula de medição


- Célula galvânica com um electrólito alcalino coberto por uma membrana, consiste no corpo da célula, o cátodo de prata, chumbo do ânodo e do electrólito
- a membrana de teflon permeável ao oxigênio constitui a superfície limite entre o interior da célula e a solução medindo
- A difusão de oxigênio através da membrana, se fazer reagir electroquimicamente no cátodo
- Entre ânodo e cátodo, uma corrente irá fluir que é linearmente proporcional ao teor reduzido de oxigênio
- Devido ao consumo de oxigênio um fluxo de pelo menos 5 cm/ s deve ser alcançado

Tecnologia Óptica

- Sensor óptico projetado para medir o oxigênio dissolvido em soluções aquosas
- Devido à radiação, luminóforo (coloração) muda de seu estado básico para um estado animado
- Luminóforo retorna ao seu estado básico, ao perder radiação luminescência
- Se luminóforo entra em contato com o oxigênio, que colide com o oxigênio - sem emissão de radiação luminescência
- Sem oxigênio é consumido nenhum fluxo mínimo é necessária
- Alta precisão de medição, mesmo para baixas concentrações

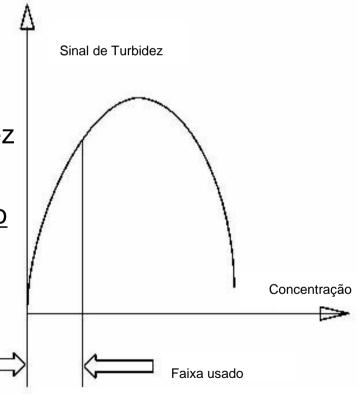


More than sensors + automation

Tecnologia Óptica

Princípio da luminescência de extinção

4. Tecnologia para medição de turbidez


Noções básicas

Noções básicas de tecnologia para medição de turbidez

Medição ←→ Conteúdo sólido

- Nenhuma relação linear entre a turbidez e teor de sólidos
- A turbidez é <u>específica para o substrato</u>
- A turbidez é <u>específico para o</u> <u>dispositivo de medição</u>

Sinal típica de sondas de trabalhar com luz dispersa

Método espalhamento de luz

Espalhamento de luz lateralmente

- Nefelometria, 90 ° dispersão da luz, → NTU, FNU, FTU
- Método padronizado para controlar a água com turbidez luz, por exemplo, água potável

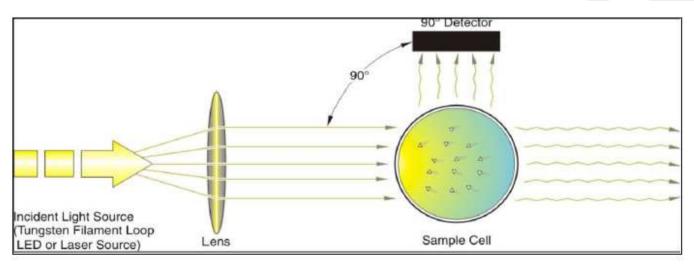


Figure 1 - Optical geometry required for a basic nephelometric turbidity measurement.

Método de luz transmitida

Atenuação da radiação penetrante, devido à absorção Avaliação da perda de luz do feixe de luz que penetra

- Ângulo 0 ° conforme ISO ou 180 ° como por EPA
- Método padronizado para a água altamente turva, por exemplo, turbidez das águas residuais

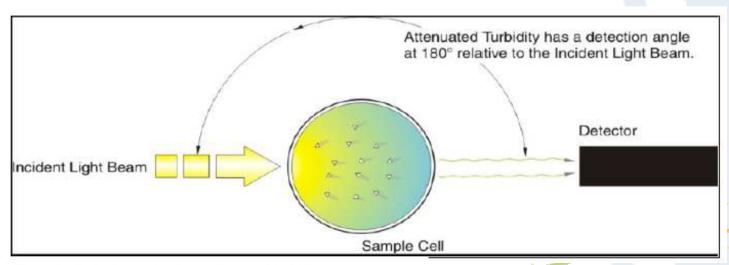
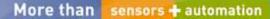



Figure 2 – Optical geometry for an attenuated turbidity measurement.

Turbidez- métodos / processos

2 métodos de medição principais para avaliação da concentração (sem concentração em massa!) De substâncias não dissolvidas com turbidez.

Método depende:

1. ângulo de medição

- ■Luz difusa(90°)
 → Nefelometria
- ■Luz transmitida(180°) → Absorptiometry

2. Fonte de luz

- Infravermelho (IR-LED) → Mercado Europeu
- A luz branca (fonte de banda larga Wolfram da luz) → mercado americano

Turbidimetro - Unidade de Turbidez

Não-padronizados método específico do ramo

 Diferentes combinações de métodos optoeletrônicos por exemplo 4 feixes método de mudança de luz

- ASBC*1
- Método Ratio: Avaliação de diferentes ângulos(90°, 12°..)

Aplicações: o desperdício de água, a indústria

5.4 Meassurments turbidez

Grupo de produtos: 202670

Princípio de medição: medição de turbidez Optical (nefelométrica) de acordo com os 90 ° espalhadas método de luz de acordo com a norma DIN EN ISO 7027

Unidade de medida: NTU (Unidade de Turbidez Nefelométricas)

JUMO ecoLine NTU - Dados técnicos

Temperatura do processo: 0 to 50° C

Faixa de pressão: up to 5 bar

Temperatura sonda: NTC 10K, integrated in the sensor

Interface: RS485 Modbus RTU report*

NTC

^{*} só em conjunto com JUMO AQUIS 500 RS

Vantagens JUMO ecoLine NTU

- 90 ° espalhadas método leve, aprovado em conformidade com a norma DIN EN ISO 7027
- Utilizável em uma ampla gama de aplicações (de alta e baixa turbidez)
- Construção robusta, fácil de manusear, simples e rápido comissionamento
- Ex funciona comportamento deriva pré-calibrado, longo tempo de execução antes de ser necessária nova calibração, baixo
- Medido transmissão digital de valor confiável
- Armazenamento dos dados específicos de calibração dos sensores e no sensor electrónico
- Baixos custos operacionais, vida longa do sensor> 5 anos
- Peças de reposição não precisava
- Para usar com JUMO AQUIS 500 RS

5. JUMO Produtos

pH REDOX (ORP) O-OD Turbidez

5.1 Electrodos JUMO pH y ORP

Redox potential – Eletrodos de medição

- Sondas com componente ativo da platina
 - redução do crómio
 - monitorização piscina
- Sondas com componente ativo de ouro
 - cianeto de desintoxicação
 - oxidação de nitrito

JUMO Acessórios

Fluxo através-

Imersão-

Troca rápida-

Processamento-

More than sensors + automation

JUMO Acessórios

Cable e tomadas

Conversor de impedância

Simuladores

soluções de calibração

5.2 Dois sistemas de medição de oxigênio dissolvido

JUMO dTRANS 02 01

Transmissor eletrolítico para oxigênio dissolvido com a unidade operacional separado (202610)

JUMO AQUIS 500 RS

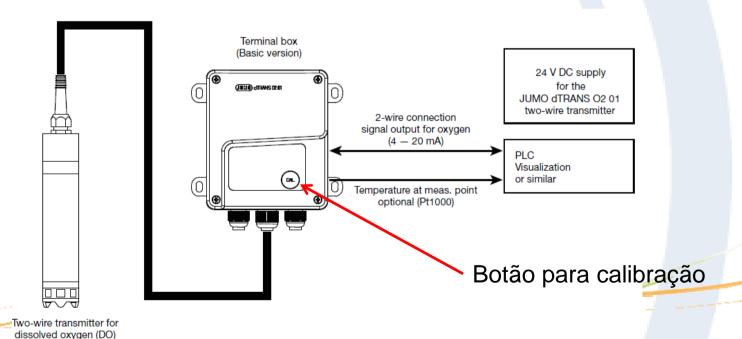
Exibição Unit / Controller for Sensores digitais com Modbus Protocol (202569)

JUMO ecoLine O-DO

Sensor óptico de oxigênio dissolvido (OD) (202.613)

5.2.1 JUMO dTRANS O2 para 01

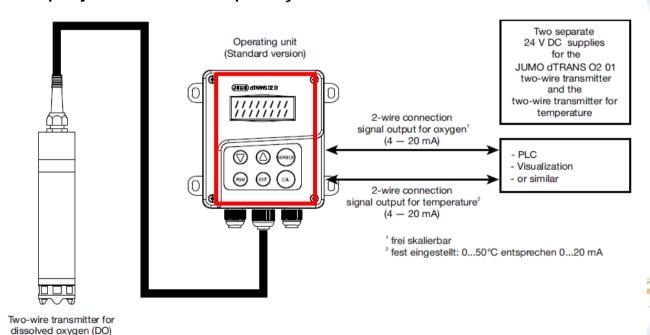
Oxigênio Dissolvido (OD)

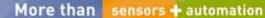

- Transmissor de dois fios
- Faixa de medição: 0-2 or 0-50 mg/l
- Configuração via teclado ou programa de instalação
- Áreas de aplicação:

Plantas domésticas e industriais de tratamento de esgoto, monitoramento de água potável, controle de poluição da água, criação de peixes (de água doce e salgada), plantas de processamento

Versão 1: sensor de oxigênio com caixa de terminais Versão básica, Tipo 202610/80...

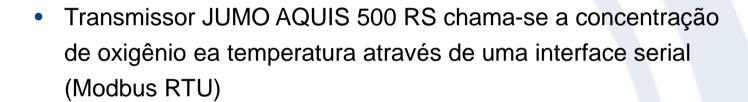
- Conexão direta a uma unidade de avaliação, sem display local
- Configuração com um programa de instalação opcional



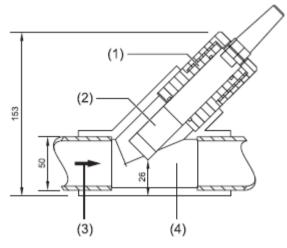


Versão 2: sensor de oxigênio com a unidade operacional

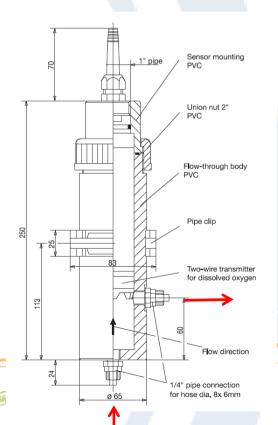
Versão básica, Tipo 202610/81...


 Como para a versão básica, mas com uma unidade operacional, display e teclas de operação adicionais

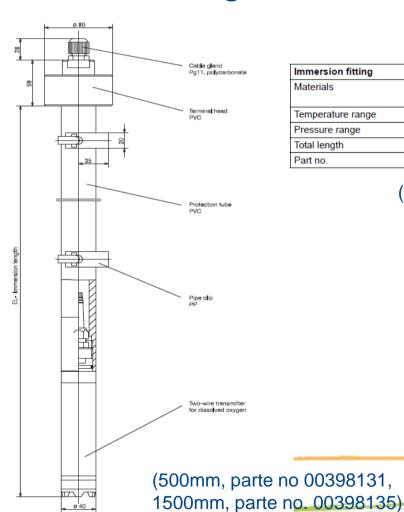
5.2.2 JUMO ecoLine O-DO


NOTE!

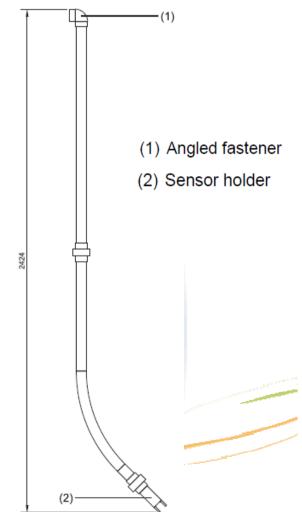
Optical oxygen sensors do not carry out any continuous measurements. The measuring procedures are activated by the connected display unit / controller and typically last approx. one second. **To extend the operating life of the optical membrane**, the measurement interval can be set to a value in the range 1 to 60 seconds in the AQUIS 500 RS display unit / controller (10 seconds in the delivery status).


A conexão de escoamento

Com articulações soquete ligados montagem em linha de alimentação para o meio a ser medido ou em desvio


PVC flow fitting, angled seat			
Material	PVC		
Admissible temperature	0 to 60 °C		
Pressure resistance	Up to 5 bar		
Connection	Bonded socket joints		
Process connection	T-piece DN 50, 45°		
Part no.	00601909		

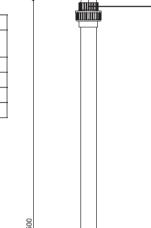
Conexão da mangueira (parte não 00.398.142) Para mangueira com diâmetro. 8 x 6 milímetros



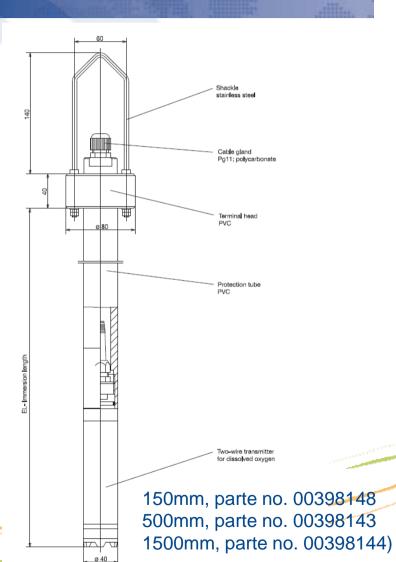
Imersão montagem

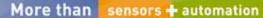
Immersion fitting			
Materials	Pipe:	PVC	
	Sensor mounting:	PVC	
Temperature range	0 to 60 °C		
Pressure range	Up to 5 bar		
Total length	3,112 mm	Other lengths	
Part no.	00616717	on request	

(parte no. 00605469)

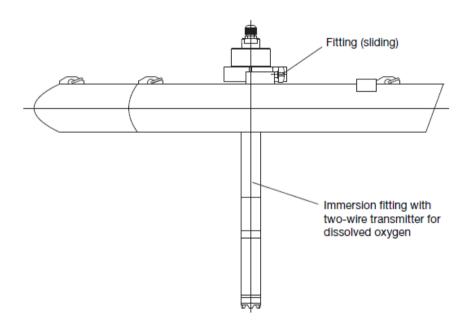


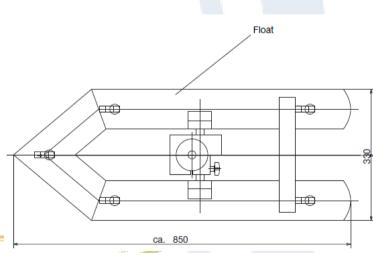
More than sensors + automation



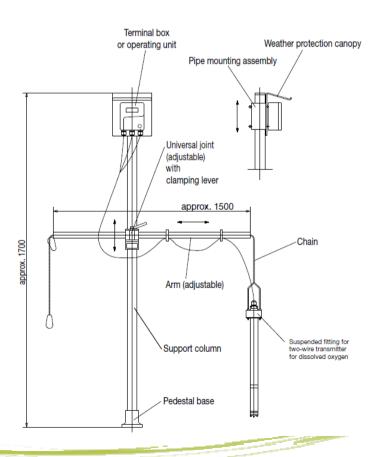

Encaixes de suspensão

Suspended fitting				
Materials	Pipe:	PVC		
	Sensor mounting:	PVC		
Temperature range	0 to 60 °C			
Pressure range	Up to 5 bar			
Total length	1,500 mm			
Part no.	00616716			

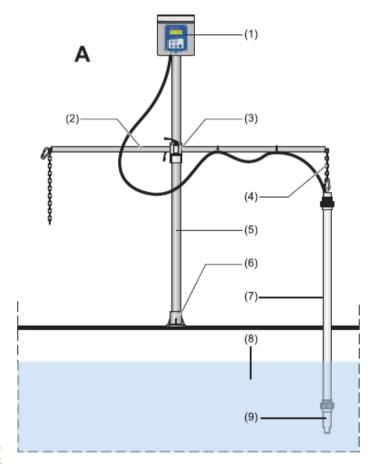

- (1) Fastener with chain holder
- (2)Sensor mounting

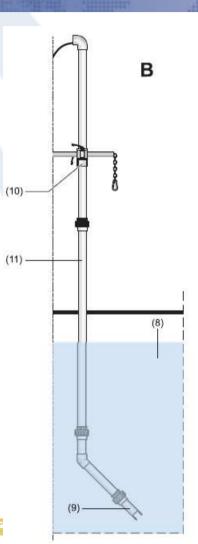


Acessórios flutuante (part no. 00397483)


Adequado encaixe imersão, imersão comprimento: 1500 mm parte no.: 00398135

Coluna de suporte com base de pedestal


Braço, corrente e proteção contra intempéries canopy



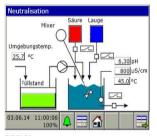
Construção de um ponto de medição

Multichannel Modular dispositivo de medição

para análise do líquido com controlador integrado e gravador sem papel

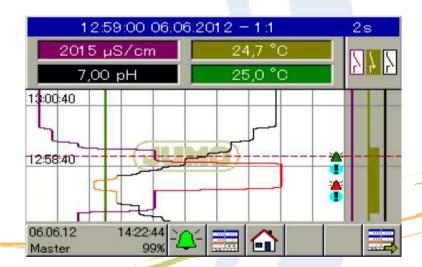
AQUIS touch P

AQUIS touch S

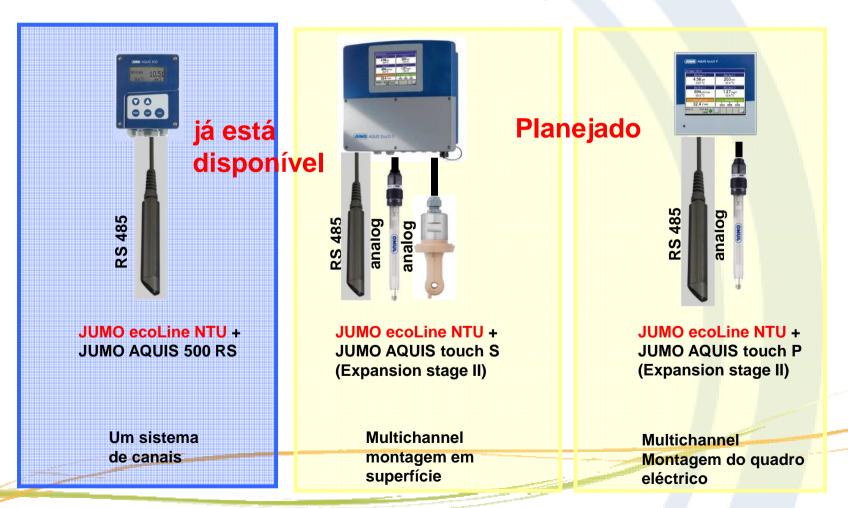

More than sensors + automation

Opções com os dispositivos

[-]

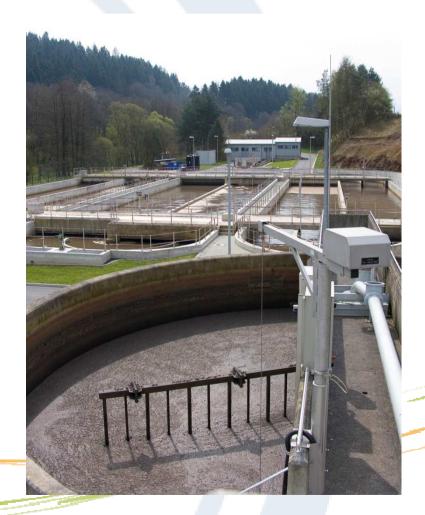


6,3 pH 25,7 °C 150,00 cm 03.06.14 11:00:06


🛂 Zurück		Zurück Petails		
Datum	Uhrzeit		Beschreibung	ı
03.06.2014	10:48:42		NEUE KONFIGURATION	1
03.06.2014	10:48:38	Ŷ	Hand Regler 1 Aus	ı
03.06.2014	10:48:38		Alarm 1 Grenzwert 1	ı
03.06.2014	10:48:38	4	Alarm 1 Temp.eing. 1 Aus	
03.06.2014	10:48:16	Ŷ	Hand Regler 1 Ein	
03.06.2014	10:40:08	14	Alarm 1 Temp.eing. 1 Ein	
03.06.2014	10:40:08		NEUE KONFIGURATION	I.

Plant North				
Tank 1	Tank 3			
4.56 pH 23.5 °C	203 mV 22.4 °C			
Tank 2	Tank 4			
894 µS/cm	1.27 mg/l			
26.3 °C	12.6 °C			
Flow	Pumps			
32.4 I/min	1 2 3			
14/06/24 15:20:05 Master 100%				

A conexão com outros dispositivos JUMO



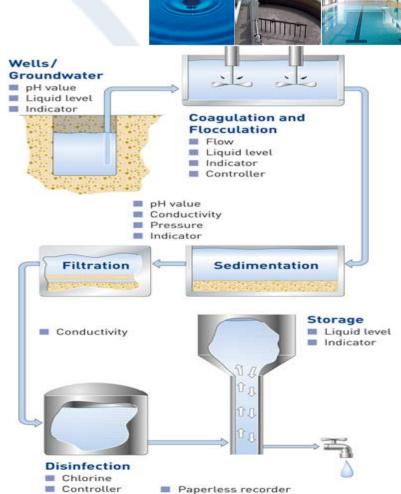


More than sensors + automation

Aplicações Exemplos

Esgoto

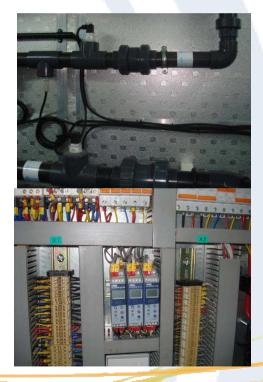
Engenharia de Água e resíduos


Beber água de tratamento de águas subterrâneas

Díspositivo: pH JUMO tecLine 201020*

Cloro livre (202630* for desinfection)

JUMO 202630 with fitting JUMO tecLine 201020



Engenharia de Água e resíduos

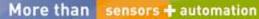
Beber água de tratamento de águas subterrâneas

Osmosis inversa (RO) unidad con transmisor JUMO ecoTRANS LF 03 y sensor de conductividad JUMO tecLine 202924

More than sensors + automation

Engenharia de Água e resíduos

Deionizers água


Dispositivos:

- JUMO dTRANS CR 02
- JUMO tecLine 202924 ou JUMO tecLine 202922 (mais compacto)

Engenharia de Água e resíduos

Processo: Aplicação Limpeza de gás controle de água / limpeza do ar contaminado

- Dispositivos:
 - JUMO tecLine 201020* neutralização de gás
 - JUMO tecLine 201025* para a oxidação dos gases

Engenharia de Água e resíduos

Controle de Processos em produtos de limpeza de água a gás

- Em alguns wipes molhado, agentes oxidantes são adicionados à água utilizada (para remover o odor e oxidar componentes potencialmente perigosos e impedi-los de se tornar tóxico).
- Para verificar se há componente oxidante suficiente na fase líquida é necessário medir o ORP, além de pH.

More than

sensors + automation

Engenharia de Água e resíduos

Estações de tratamento de águas residuais

Dispositivos: pH (JUMO tecLine 201020*), O2 (JUMO dTRANS 02 01 202610 in aeration tank), conductividade (JUMO tecLine 202925*; JUMO CTI-500)

Transmissor JUMO AQUIS 500 Ci Sensor JUMO tecLine 202943 com imersão integrado 202822

Acessório de flutuação para medir a condutividade.

*+ transmissor

system

Screening system Grit chamber Liquid level pH value Indicator Conductivity Primary settlement tank Aeration tank Dissolved Oxygen pH value Temperature Indicator Controller Secondary settlement tank pH value ■ Temperature Indicator Digester Liquid level Pressure 4 Temperature pH value Indicator

Paperless recorder

Engenharia de Água e resíduos

Cooling water

- Purity control of water quality HPW semiconductor cooling
- Devices: JUMO tecLine 202924 + JUMO ecoTRANS LF03 or JUMO dTRANS CR 02

Perguntas ??

Obrigado pela atenção